JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies.

NZVI was supported on a pillared bentonite (Al-bent) to enhance the reactivity of NZVI and prevent its aggregation. The performance and mechanisms of the combined NZVI/Al-bent on removing hexavalent chromium (Cr(VI)) was investigated by batch and XAFS experiments. The batch investigations indicated that Cr(VI) could be almost completely removed by NZVI/Al-bent after 120 min. The efficiency was not only much higher than that by NZVI (63.0%), but also superior to the sum of NZVI reduction and Al-bent adsorption (12.4%). Besides, NZVI/Al-bent exhibited good stability and reusability, and Al-bent could reduce the amount of iron ions released into the solution. XANES results provided evidence that NZVI/Al-bent could reduce Cr(VI) entirely into Cr(III), while NZVI reduced Cr(VI) partly into Cr(III) with a trace of Cr(VI) adsorbed on the corrosion products. The structure of Cr(VI)-treated NZVI/Al-bent determined with EXAFS revealed the formation of Cr-Al/Si bond, suggesting that some insoluble Cr(III) species might be transferred to the surface of Al-bent, therefore the precipitates on iron surface could be greatly reduced. The results demonstrated that Al-bent plays a significant role in enhanced reactivity and stability of NZVI, and may shed new light on design and fabrication of supported NZVI for environmental remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app