Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and Stratus optical coherence tomography findings.

OBJECTIVES: To correlate diffusion-tensor imaging (DTI) of the optic nerve with morphological indices obtained by scanning laser polarimetry (GDx-VCC); confocal scanning laser ophthalmoscopy (Heidelberg III retinal tomograph; HRT-III) and optical coherence tomography (Stratus OCT).

METHODS: Thirty-six subjects (12 with no eye disease and 24 with perimetrically diagnosed glaucoma) were examined. One eye for each participant was studied with 3-Tesla DTI (with automatic generation of mean diffusivity (MD) and fractional anisotropy (FA) values); GDx-VCC, HRT-III and OCT. Single and multiple regression analyses of all variables studied were performed.

RESULTS: MD displayed the strongest correlation with linear cup/disc ratio (LCDR) from HTR-III (r=0.662), retinal nerve fibre layer (RNFL) thickness (avThickn) from OCT (r=-0.644), and nerve fibre index (NFI) from GDx (r=0.642); FA was strongly correlated with the LCDR (r=-0.499). In multiple regression analyses, MD correlated with LCDR (p=0.02) when all variables were considered; with avThickn (p<0.01) (analysis of all RNFL parameters); with NFI (p<0.01) (analysis of all GDx parameters); with avThickn (p<0.01) (analysis of OCT parameters); with LCDR (p=0.01) (analysis of HRT-III morphometric parameters) and with linear discriminant function (RB) (p=0.02) (analysis of HRT-III indices). As for FA, it correlated with avThickn (p=0.02) when we analysed the OCT parameters and with RB (p=0.01) (analysis of HRT-III indices).

CONCLUSIONS: DTI parameters of the axonal architecture of the optic nerve show good correlation with morphological features of the optic nerve head and RNFL documented with GDx-VCC, HRT-III and OCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app