JOURNAL ARTICLE

Targeted minimum loss based estimator that outperforms a given estimator

Susan Gruber, Mark J van der Laan
International Journal of Biostatistics 2012 May 18, 8 (1): Article 11
22628356
Targeted minimum loss based estimation (TMLE) provides a template for the construction of semiparametric locally efficient double robust substitution estimators of the target parameter of the data generating distribution in a semiparametric censored data or causal inference model (van der Laan and Rubin (2006), van der Laan (2008), van der Laan and Rose (2011)). In this article we demonstrate how to construct a TMLE that also satisfies the property that it is at least as efficient as a user supplied asymptotically linear estimator. In particular it is shown that this type of TMLE can incorporate empirical efficiency maximization as in Rubin and van der Laan (2008), Tan (2008, 2010), Rotnitzky et al. (2012), and retain double robustness. For the sake of illustration we focus on estimation of the additive average causal effect of a point treatment on an outcome, adjusting for baseline covariates.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22628356
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"