Add like
Add dislike
Add to saved papers

Non-covalent interactions of coumarin dyes with cucurbit[7]uril macrocycle: modulation of ICT to TICT state conversion.

Non-covalent interaction of coumarin laser dyes, namely coumarin-1 (C1), coumarin-481 (C481) and coumarin-6H (C6H), with a versatile macrocyclic host molecule cucurbit[7]uril (CB7), has been investigated in aqueous solution using photophysical methods. Steady-state and time-resolved fluorescence studies illustrate significant enhancements/modifications in the fluorescence yields, lifetimes and spectral features of C1, C481 and C6H on interaction with CB7, and are assigned to 1 : 1 complex formation between the dyes and the CB7 host. The complex formation is mainly driven by charge-dipole interaction, as evident from the binding constant values (K ~ 10(4)-10(5) M(-1)). The large changes in the excited state behaviour of C1 and C481 as compared to C6H in the presence of CB7 indicate that CB7 binds C1 and C481 through the encapsulation of the 7-N,N'-diethylamino group of the dyes and the structural rigidity imposed by this interaction dramatically alters the excited state properties of the dyes by preventing the conversion of their emissive intramolecular charge transfer (ICT) state to the non-radiative twisted intramolecular charge transfer (TICT) state. The present results direct towards the probable supramolecular approach using water soluble macrocyclic CB7, in the development of aqueous dye laser systems in the blue-green region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app