JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation.

Human Reproduction 2012 August
BACKGROUND: Oocyte maturation and competence to development depends on its close relationship with cumulus cells (CCs). However, the maturation conditions of human cumulus-oocyte complexes (COCs) might affect gene expression in both oocyte and CCs. We thus compared the transcriptome profiles of CCs isolated from in vivo and in vitro matured COCs at different nuclear maturation stages.

METHODS: Three groups of CCs from patients who underwent ICSI were included: CCs of patients with polycystic ovary syndrome (PCOS) referred for in vitro maturation (IVM), CCs from patients with PCOS for in vivo maturation (used as controls) and CCs from normal responders referred for in vivo maturation. CCs were isolated from COCs at the germinal vesicle, metaphase I and metaphase II stages. Microarray technology was used to analyse the global gene expression and significance analysis of microarray to compare the expression profiles of CCs from COCs at different nuclear maturation stages following IVM or in vivo maturation. Selected genes were validated by RT-qPCR.

RESULTS: In CCs isolated after IVM, genes related to cumulus expansion and oocyte maturation, such as EREG, AREG and PTX3, were down-regulated, while cell cycle-related genes were up-regulated in comparison with CCs from in vivo matured COCs from PCOS and normal responder patients. Moreover, irrespective of the stage of oocyte maturation, genes involved in DNA replication, recombination and repair were up-regulated in CCs after IVM.

CONCLUSIONS: The CC transcriptomic signature varies according to both the oocyte maturation stage and the maturation conditions. Our findings suggest a delay in the acquisition of the mature CC phenotype following IVM, opening a new perspective for the improvement in IVM conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app