Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize

Christian Riedelsheimer, Jan Lisec, Angelika Czedik-Eysenberg, Ronan Sulpice, Anna Flis, Christoph Grieder, Thomas Altmann, Mark Stitt, Lothar Willmitzer, Albrecht E Melchinger
Proceedings of the National Academy of Sciences of the United States of America 2012 June 5, 109 (23): 8872-7
The diversity of metabolites found in plants is by far greater than in most other organisms. Metabolic profiling techniques, which measure many of these compounds simultaneously, enabled investigating the regulation of metabolic networks and proved to be useful for predicting important agronomic traits. However, little is known about the genetic basis of metabolites in crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110 SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for agronomic traits of mature plants in field trials. Metabolite concentrations had on average a repeatability of 0.73 and showed a correlation pattern that largely reflected their functional grouping. Genome-wide association mapping with correction for population structure and cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, explaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15 distinct SNP-metabolite associations, each of which explained more then 15% of the genetic variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong associations (P values to ) with a region on chromosome 9 harboring cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precursors correlated significantly with lignin content, plant height, and dry matter yield, suggesting that metabolites represent promising connecting links for narrowing the genotype-phenotype gap of complex agronomic traits.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"