Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

TGF-β autocrine pathway and MAPK signaling promote cell invasiveness and in vivo mammary adenocarcinoma tumor progression.

Oncology Reports 2012 August
Breast cancer progression and metastasis have been linked to abnormal signaling by transforming growth factor-β (TGF-β) cytokines. In early-stage breast cancers, TGF-β exhibits tumor suppressor activity by repressing cell proliferation and inducing cell death, whereas in advanced-stage tumors, TGF-β promotes invasion and metastatic dissemination. The molecular mechanisms underlying pro-oncogenic activities of TGF-β are not fully understood. The present study validates the role of TGF-β signaling in cancer progression and explores mediators of pro-oncogenic TGF-β activities using the LM3 mammary adenocarcinoma cell line, derived from a spontaneous murine mammary adenocarcinoma. Expression of kinase-inactive TGF-β receptors decreased both basal and TGF-β-induced invasion. Analysis of signal transduction mediators showed that p38MAPK and MEK contribute to TGF-β stimulation of cell motility and invasion. TGF-β disrupted the epithelial actin structures supporting cell-cell adhesions, and increased linear actin filaments. Moreover, MEK and p38MAPK pathways showed opposite effects on actin remodeling in response to TGF-β. Blockade of Raf-MEK signaling enhanced TGF-β induction of actin stress-fibers whereas p38MAPK inhibitors blocked this effect. A novel observation was made that TGF-β rapidly activates the actin nucleation Arp2/3 complex. In addition, TGF-β stimulated matrix metalloproteinase MMP-9 secretion via a MAPK-independent pathway. Experiments using syngeneic mice showed that kinase-inactive TGF-β receptors inhibit the first stages of LM3 tumor growth in vivo. Our studies demonstrate that autocrine TGF-β signaling contributes to the invasive behavior of mammary carcinoma cells. Moreover, we show that both MAPK-dependent and -independent pathways are necessary for TGF-β-induced effects. Therefore, MEK-ERK and p38 MAPK pathways are potential venues for therapeutic intervention in pro-oncogenic TGF-β signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app