JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

KIBRA exhibits MST-independent functional regulation of the Hippo signaling pathway in mammals.

Oncogene 2013 April 5
The Salvador/Warts/Hippo (Hippo) signaling pathway defines a novel signaling cascade regulating cell contact inhibition, organ size control, cell growth, proliferation, apoptosis and cancer development in mammals. The upstream regulation of this pathway has been less well defined than the core kinase cassette. KIBRA has been shown to function as an upstream member of the Hippo pathway by influencing the phosphorylation of LATS and YAP, but functional consequences of these biochemical changes have not been previously addressed. We show that in MCF10A cells, loss of KIBRA expression displays epithelial-to-mesenchymal transition (EMT) features, which are concomitant with decreased LATS and YAP phosphorylation, but not MST1/2. In addition, ectopic KIBRA expression antagonizes YAP via the serine 127 phosphorylation site and we show that KIBRA, Willin and Merlin differentially regulate genes controlled by YAP. Finally, reduced KIBRA expression in primary breast cancer specimens correlates with the recently described claudin-low subtype, an aggressive sub-group with EMT features and a poor prognosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app