COMPARATIVE STUDY
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL

Neurally adjusted ventilatory assist improves patient-ventilator interaction during postextubation prophylactic noninvasive ventilation

Matthieu Schmidt, Martin Dres, Mathieu Raux, Emmanuelle Deslandes-Boutmy, Felix Kindler, Julien Mayaux, Thomas Similowski, Alexandre Demoule
Critical Care Medicine 2012, 40 (6): 1738-44
22610179

OBJECTIVES: To compare the respective impact of pressure support ventilation and naturally adjusted ventilatory assist, with and without a noninvasive mechanical ventilation algorithm, on patient-ventilator interaction.

DESIGN: Prospective 2-month study.

SETTING: Adult critical care unit in a tertiary university hospital.

PATIENTS: Seventeen patients receiving a prophylactic postextubation noninvasive mechanical ventilation.

INTERVENTIONS: Patients were randomly mechanically ventilated for 10 mins with: pressure support ventilation without a noninvasive mechanical ventilation algorithm (PSV-NIV-), pressure support ventilation with a noninvasive mechanical ventilation algorithm (PSV-NIV+), neurally adjusted ventilatory assist without a noninvasive mechanical ventilation algorithm (NAVA-NIV-), and neurally adjusted ventilatory assist with a noninvasive mechanical ventilation algorithm (NAVA-NIV+).

MEASUREMENTS AND MAIN RESULTS: Breathing pattern descriptors, diaphragm electrical activity, leak volume, inspiratory trigger delay, inspiratory time in excess, and the five main asynchronies were quantified. Asynchrony index and asynchrony index influenced by leaks were computed. Peak inspiratory pressure and diaphragm electrical activity were similar for each of the four experimental conditions. For both pressure support ventilation and neurally adjusted ventilatory assist, the noninvasive mechanical ventilation algorithm significantly reduced the level of leakage (p < .01). Inspiratory trigger delay was not affected by the noninvasive mechanical ventilation algorithm but was shorter in neurally adjusted ventilatory assist than in pressure support ventilation (p < .01). Inspiratory time in excess was shorter in neurally adjusted ventilatory assist and PSV-NIV+ than in PSV-NIV- (p < .05). Asynchrony index was not affected by the noninvasive mechanical ventilation algorithm but was significantly lower in neurally adjusted ventilatory assist than in pressure support ventilation (p < .05). Asynchrony index influenced by leaks was insignificant with neurally adjusted ventilatory assist and significantly lower than in pressure support ventilation (p < .05). There was more double triggering with neurally adjusted ventilatory assist.

CONCLUSIONS: Both neurally adjusted ventilatory assist and a noninvasive mechanical ventilation algorithm improve patient-ventilator synchrony in different manners. NAVA-NIV+ offers the best compromise between a good patient-ventilator synchrony and a low level of leaks. Clinical studies are required to assess the potential clinical benefit of neurally adjusted ventilatory assist in patients receiving noninvasive mechanical ventilation.

TRIAL REGISTRATION: Clinicaltrials.gov Identifier NCT01280760.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
22610179
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"