EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Predicting Dendroctonus pseudotsugae (Coleoptera: Curculionidae) antiaggregation pheromone concentrations using an instantaneous puff dispersion model.

An instantaneous puff dispersion model was used to assess concentration fields of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), within a 1-ha circular plot. Several combinations of MCH release rate and releaser spacing were modeled to theoretically analyze optimal deployment strategies. The combinations of MCH release rate and releaser spacing used in the modeling exercise were based on results of previous field studies of treatment efficacy. Analyses of model results suggest that a release rate up to six times the initial standard, at a correspondingly wider spacing to keep the total amount of pheromone dispersed per unit area constant, may be effective at preventing Douglas-fir beetle infestation. The model outputs also provide a visual representation of pheromone dispersion patterns that can occur after deployment of release devices in the field. These results will help researchers and practitioners design more effective deployment strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app