Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

E2F1-dependent pathways are involved in amonafide analogue 7-d-induced DNA damage, G2/M arrest, and apoptosis in p53-deficient K562 cells.

The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up- and down-stream events involved in the activation of the E2F1-dependent pro-apoptotic pathway. For this purpose, a amonafide analogue, 7-d (2-(3-(2-(Dimethylamino)ethylamino)propyl)-6-(dodecylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione) was screened, which exhibited high antitumor activity against p53-deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7-d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time-dependent manner via p53-independent pathway. A striking increase in "Comet tail" formation and γ-H2AX expression showed that DNA double strand breaks (DSB) were caused by 7-d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7-d-induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7-d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf-1 and p73 dissociation from HDM2 was induced by 7-d treatment, however, knockout of E2F1 expression reversed p73, Apaf-1, and p21(Cip1/WAF1) expression, reactivated cell cycle progression, and inhibited 7-d-induced apoptosis. Altogether our results for the first time indicate that 7-d mediates its growth inhibitory effects on CML p53-deficient cells via the activation of an E2F1-dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf-1, and p21(Cip1/WAF1).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app