JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanisms of tumor necrosis factor-alpha-induced leaks in intestine epithelial barrier.

Cytokine 2012 August
PURPOSE: The aim of this study was to investigate the signaling mechanisms surrounding changes in tight junction (TJ) and the permeability of human intestinal epithelial cell induced by tumor necrosis factor-alpha (TNF-α).

METHODS: To confirm that TNF-α induces epithelial barrier hyperpermeability by disrupting tight junction, Caco-2 cells were exposed to TNF-α, and changes in epithelial permeability (via TER assay), F-actin dynamics (via Rhodamine-phalloidin staining) and tight junction protein expression (via western blot) were monitored. Moreover, to ensure that NF-κB participated in the regulatory mechanisms, Caco-2 cells were transfected with DNMu-IκBα or control plasmids, the above experiments were repeated and the activation effect of TNF-α on NF-κB was detected by luciferase reporter assays. Lastly, we took dominant negative plasmid and knockdown approaches to investigate the potential importance of the NF-κB/myosin light chain kinase (MLCK)/myosin light chain phosphorylation (pMLC) pathways in TNF-a-mediated damage.

RESULT: TNF-α could cause NF-κB activation, F-actin rearrangement, tight junction disruption and barrier dysfunction. These effects were alleviated by inhibiting NF-κB. TNF-α induced increase of MLCK transcription and MLC phosphorylation act later than NF-κB activation, which could be suppressed both by inactivating and deleting NF-κB.

CONCLUSIONS: TNF-α induces intestinal epithelial cell hyperpermeability by disrupting TJs, in part through MLCK upregulation, in which NF-κB is the positive upstream regulator for MLCK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app