Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth

Sarah M Strycharz-Glaven, Leonard M Tender
ChemSusChem 2012, 5 (6): 1106-18
The number of investigations involving bioelectrochemical systems (BES), processes in which microorganisms catalyze electrode reactions, is increasing while their mechanisms remain unresolved. Geobacter sulfurreducens strain DL1 is a model electrode catalyst that forms multimicrobe-thick biofilms on anodes that catalyze the oxidation of acetate to result in an electric current. Here, we report the characterization by cyclic voltammetry (CV) of DL1 biofilm-modified anodes (biofilm anodes) performed during biofilm development. This characterization, based on our recently reported model of biofilm anode catalytic activity, indicates the following. 1) As a biofilm grows, catalytic activity scales linearly with the amount of anode-accessible redox cofactor in the biofilm. This observation is consistent with a catalytic activity that is limited during biofilm growth by electron transport from within cells to the extracellular redox cofactor. 2) Distinct voltammetric features are exhibited that reflect the presence of a redox cofactor expressed by cells that initially colonize an anode that is not involved in catalytic current generation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"