Development and characterization of a preclinical ovarian carcinoma model to investigate the mechanism of acquired resistance to trastuzumab

Leopoldo L Luistro, James A Rosinski, Hongjin Bian, Subal Bishayee, Pranela Rameshwar, Nicholas M Ponzio, Steve R Ritland
International Journal of Oncology 2012, 41 (2): 639-51
Trastuzumab (Herceptin®) is a humanized monoclonal antibody designed to bind and inhibit the function of the human epidermal growth factor receptor 2 (HER2)/erbB2 receptor. Trastuzumab has demonstrated clinical activity in several types of HER2-overexpressing epithelial tumors, such as breast and metastatic gastric or gastroesophageal junction cancer. Relapse and therapeutic resistance, however, still occur in a subset of patients treated with regimens including trastuzumab, despite significant improvements in response rates, survival and quality of life. To investigate the potential mechanisms of acquired therapeutic resistance to trastuzumab, we developed a preclinical model of human ovarian cancer cells, SKOV-3 Herceptin-resistant (HR), and examined the corresponding changes in gene expression profiles. SKOV-3 HR cells were developed by in vivo serial passaging of parental trastuzumab-sensitive SKOV-3 cells. Following four rounds of serial transplantation of 'break-through' xenograft tumors under trastuzumab treatment, significant and reproducible differences in the effects of trastuzumab treatment between SKOV-3 HR and SKOV-3 cells in vivo and in vitro were revealed. SKOV-3 HR cells retained HER2 protein expression but were unaffected by the antiproliferative effects of trastuzumab. The trastuzumab binding affinity for SKOV-3 HR cells was diminished, despite these cells having more binding sites for trastuzumab. Microarray expression profiling (MEP) was performed to determine the genes involved in the resistance mechanism. Functional analysis revealed the differential expression of genes potentially involved in angiogenesis, metastasis, differentiation and proliferation, such as mucin1 (MUC1). Immunohistochemical staining of SKOV-3 HR cells demonstrated a marked overexpression of MUC1. Based on these data, we hypothesize that the overexpression of MUC1 may hinder trastuzumab binding to HER2 receptors, abrogating the antitumor effects of trastuzumab and thus could contribute to resistance to therapy. Moreover, the resultant MEP preclinical gene signature in this preclinical model system may provide the basis for further investigation of potential clinical mechanisms of resistance to trastuzumab.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"