Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vitro labeling of endothelial progenitor cells isolated from peripheral blood with superparamagnetic iron oxide nanoparticles.

The transplantation of endothelial progenitor cells (EPCs) provides a novel method for the treatment of human tumors or vascular diseases. Magnetic resonance imaging (MRI) has proven to be effective in tracking transplanted stem cells by labeling the cells with superparamagnetic iron oxide (SPIO) nanoparticles. The SPIO has been used to label and track the EPCs; however, the effect of SPIO upon EPCs remains unclear on a cellular level. In the present study, EPCs were labeled with home-synthesized SPIO nanoparticles in vitro and the biological characteristics of the labeled EPCs were evaluated. The EPCs were isolated from the peripheral blood of New Zealand rabbits and cultured in fibronectin-coated culture flasks. The EPCs were labeled with home-synthesized SPIO nanoparticles at a final iron concentration of 20 µg/ml. Labeled EPCs were confirmed with transmission electron microscopy and Prussian blue staining. The quantity of iron/cell was detected by atomic absorption spectrometry. The membranous antigens of EPCs were detected by cytofluorimetric analysis. Cell viability and proliferative capability between the labeled and unlabeled EPCs were compared. The rabbit EPCs were effectively labeled and the labeling efficiency was approximately 95%. The SPIO nanoparticles were localized in the endosomal vesicles of the EPCs, which were confirmed by transmission electron microscopy. No significant differences were found in cell viability and proliferative capability between labeled and unlabeled EPCs (P>0.05). In conclusion, rabbit peripheral blood EPCs were effectively labeled by home-synthesized SPIO nanoparticles, without influencing their main biological characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app