JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in Ligon lintless-1 mutant.

Genomics 2012 July
Fiber length is a key determinant of cotton yield and quality. Using a monogenic dominant cotton mutant Ligon lintless-1 with extremely short fibers, we employed microarray technology and quantitative real time PCR to compare transcriptomes of Li(1) and the normal wild-type TM-1, the results showed that only a few genes differentially expressed in 0 days postanthesis (DPA) ovules and 3 DPA fibers, whereas 577 transcripts differentially expressed in 6 DPA fibers. 6 DPA is probably a key phase determining fiber elongation. Gene ontology analyses showed such processes as response to stimulus, signal transduction, and lipid metabolism were readjusted by the mutant gene. Pathway studio analysis indicated that auxin signaling and sugar signaling pathways play major roles in modulation of early fiber elongation. This work provides new insight into the mechanisms of fiber development, and offers novel genes as potential objects for genetic manipulation to achieve improvement of fiber properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app