Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Contribution of murine bone marrow mesenchymal stem cells to pancreas regeneration after partial pancreatectomy in mice.

The implantation of BMSCs (bone marrow mesenchymal stem cells) has emerged as a potential method of treating tissue damage, but the in vivo differentiation of BMSCs in an injured pancreas and its therapeutic effects have not been determined. Our aim has been to investigate the potential of BMSCs to contribute to the parenchyma and mesenchymal components of the pancreas during rapid regeneration, with preliminary exploration of the molecular mechanisms of this process. GFP(+) (green fluorescent protein(+) ) BMSCs were intravenously infused into the tail veins of mice that had received a 65-70% partial pancreatectomy, while mice that had only received a partial pancreatectomy and mice that had only been injected with BMSCs served as controls. Four weeks later, the injected GFP(+) BMSCs were diffusely engrafted in the pancreatic parenchyma and mesenchyma of the recipient mice with pancreatic injuries and had differentiated into pancreatic ductal epithelial cells (accounting for 1.7±0.3%), vascular endothelial cells (3.2±0.6%) and PSCs (pancreatic stellate cells) (5.2±1.6%), but no β or neural cells. Significantly, more engrafted and differentiated GFP(+) BMSCs were observed in the regenerating pancreas than in the normal pancreas. For the mice that received a partial pancreatectomy, the pancreatic weight/body weight of the mice with BMSC treatment was greater than mice without BMSC treatment (P<0.05). In addition, real-time RT-PCR (reverse transcription-PCR) showed that the expression levels of miR-9 (microRNA 9) and miR-204 in the engrafted BMSCs (5.2- and 2.6-fold, P<0.05, respectively) were increased compared with wild-type BMSCs. We also observed a significant reduction in the expression of miR-375 (0.71-fold, P<0.05) in engrafted GFP(+) BMSCs compared with wild-type BMSCs. BMSCs can therefore be a potential cell bank for treating pancreatic injuries by contributing to a variety of cell types. This process might be related to the expression of miR-9, miR-204 and miR-375.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app