Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Resveratrol suppresses 4-hydroxyestradiol-induced transformation of human breast epithelial cells by blocking IκB kinaseβ-NF-κB signalling.

Excess estrogen stimulates the proliferation of mammary epithelial cells and hence represents a major risk factor for breast cancer. Estrogen is subjected to cytochrome P450-catalysed oxidative metabolism to produce an oncogenic catechol estrogen, 4-hydroxyestradiol (4-OHE₂). 4-OHE₂ undergoes redox cycling during which reactive oxygen species (ROS) as well as the chemically reactive estrogen semiquinone and quinone intermediates are produced, thereby contributing to hormonal carcinogenesis. Resveratrol (3,4',5-trihydroxy stilbene), a phytoalexin present in grapes, has been reported to possess chemopreventive and chemotherapeutic activities. In the present study, we examined the inhibitory effects of resveratrol on 4-OHE₂-induced transformation of human breast epithelial MCF-10A cells. Resveratrol inhibited migration and anchorage-independent growth of MCF-10A cells treated with 4-OHE₂. Resveratrol treatment suppressed the 4-OHE₂-induced activation of IκB kinaseβ (IKKβ) and phosphorylation of IκBα, and consequently NF-κB DNA binding activity and cyclooxygenase-2 (COX-2) expression. Resveratrol suppressed ROS production and phosphorylation of Akt and ERK induced by 4-OHE₂ treatment. In conclusion, resveratrol blocks activation of IKKβ-NF-κB signalling and induction of COX-2 expression in 4-OHE₂-treated MCF-10A cells, thereby suppressing migration and transformation of these cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app