JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in pyruvate dehydrogenase complex (PDHc) activity and [3H]QNB-receptor binding in rat brain subsequent to intracerebroventricular injection of bromopyruvate.

Pyruvate dehydrogenase complex (PDHc), a link between carbohydrate and acetylcholine metabolism, is a regulatory enzyme for glucose and neurotransmitter metabolism in the brain and is reduced in Alzheimer-diseased brain. To study functional consequences of an inhibition of PDHc on muscarinic receptor binding, bromopyruvate, a suicide inhibitor od PDHc, was injected intracerebroventricularly (icv) in rats. Bromopyruvate caused a reduction of PDHc activity in the 3 brain regions examined, however, reaching significance only in the cerebral cortex and the hippocampus and not in the striatum, 24 h after injection. 3, 6, and 12 weeks later, there was a normalization or transiently increased activity, respectively, of PDHc in these brain regions. No changes in concentrations of energy-rich phosphates could be demonstrated in the cerebral cortex 12 weeks after brompyruvate injection. The number of muscarinic receptors was significantly reduced in the cerebral cortex 12 weeks after injection. The data indicate that a transient reduction of brain PDHc activity in vivo is associated with a long-lasting reduction in muscarinic cholinergic receptors. Because comparable changes of PDHc and muscarinic receptors are found in dementia of Alzhemier type, the model of bromopyruvate inhibition of PDHc in rats is suggested to be useful for experimental dementia research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app