JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of epigenetic effectors in decidualizing human endometrial stromal cells.

Cyclic differentiation of human endometrial stromal cells (HESCs) into decidual cells is a highly coordinated process essential for embryo implantation and pregnancy. This differentiation process is closely recapitulated in culture upon exposure of purified HESCs to cyclic AMP and progesterone signaling. Mining of gene expression data revealed that HESCs express 147 genes coding for epigenetic effectors, 33 (22%) of which are significantly regulated (P < 0.05) upon decidualization. Among these are genes encoding for histone-modifying proteins and their cofactors, histone-binding proteins, histone variants, CpG-binding proteins and DNA methyltransferases (DNMTs). Interestingly, more than two-thirds of differentially expressed chromatin-modifying genes are down-regulated upon the transition from a proliferative to a differentiated HESC phenotype. Despite the strong regulation of DNMTs, colorimetric and long interspersed nuclear element 1 methylation assays did not show global changes in DNA methylation levels upon differentiation of HESCs. Taken together, the coordinated regulation of diverse effector molecules suggests that complex epigenetic modification at specific loci underpins the acquisition of a decidual endometrial phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app