Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis.

Lab on a Chip 2012 July 22
A droplet (digital) microfluidic device has been developed that enables complete protein sample preparation for MALDI-MS analysis. Protein solution dispensing, disulfide bond reduction and alkylation, tryptic digestion, sample crystallization, and mass spectrometric analysis are all performed on a single device without the need for any ex situ sample purification. Fluorinated solvents are used as an alternative to surfactants to facilitate droplet movement and limit protein adsorption onto the device surface. The fluorinated solvent is removed by evaporation and so does not interfere with the MALDI-MS analysis. Adding a small amount of perfluorooctanoic acid to the MALDI matrix solution improves the yield, quality and consistency of the protein-matrix co-crystals, reducing the need for extensive 'sweet spot' searching and improving the spectral signal-to-noise ratio. These innovations are demonstrated in the complete processing and MALDI-MS analysis of lysozyme and cytochrome c. Because all of the sample processing steps and analysis can be performed on a single digital microfluidic device without the need for ex situ sample handling, higher throughput can be obtained in proteomics applications. More generally, the results presented here suggest that fluorinated liquids could also be used to minimize protein adsorption and improve crystallization in other types of lab-on-a-chip devices and applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app