Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway

Zhengyu He, Yuan Gao, Yuxiao Deng, Wen Li, Yongming Chen, Shunpeng Xing, Xianyuan Zhao, Jia Ding, Xiangrui Wang
PloS One 2012, 7 (4): e35926
Pulmonary fibrosis is characterized by lung fibroblast proliferation and collagen secretion. In lipopolysaccharide (LPS)-induced acute lung injury (ALI), aberrant proliferation of lung fibroblasts is initiated in early disease stages, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4) expression in cultured mouse lung fibroblasts using TLR4-siRNA-lentivirus in order to investigate the effects of LPS challenge on lung fibroblast proliferation, phosphoinositide3-kinase (PI3K)-Akt pathway activation, and phosphatase and tensin homolog (PTEN) expression. Lung fibroblast proliferation, detected by BrdU assay, was unaffected by 1 mug/mL LPS challenge up to 24 hours, but at 72 hours, cell proliferation increased significantly. This proliferation was inhibited by siRNA-mediated TLR4 knockdown or treatment with the PI3K inhibitor, Ly294002. In addition, siRNA-mediated knockdown of TLR4 inhibited the LPS-induced up-regulation of TLR4, down-regulation of PTEN, and activation of the PI3K-Akt pathway (overexpression of phospho-Akt) at 72 hours, as detected by real-time PCR and Western blot analysis. Treatment with the PTEN inhibitor, bpV(phen), led to activation of the PI3K-Akt pathway. Neither the baseline expression nor LPS-induced down-regulation of PTEN in lung fibroblasts was influenced by PI3K activation state. PTEN inhibition was sufficient to exert the LPS effect on lung fibroblast proliferation, and PI3K-Akt pathway inhibition could reverse this process. Collectively, these results indicate that LPS can promote lung fibroblast proliferation via a TLR4 signaling mechanism that involves PTEN expression down-regulation and PI3K-Akt pathway activation. Moreover, PI3K-Akt pathway activation is a downstream effect of PTEN inhibition and plays a critical role in lung fibroblast proliferation. This mechanism could contribute to, and possibly accelerate, pulmonary fibrosis in the early stages of ALI/ARDS.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"