JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Dose escalation with overdose control using a quasi-continuous toxicity score in cancer Phase I clinical trials.

Escalation with overdose control (EWOC) is a Bayesian adaptive design for selecting dose levels in cancer Phase I clinical trials while controlling the posterior probability of exceeding the maximum tolerated dose (MTD). EWOC has been used by clinicians to design many cancer Phase I clinical trials, see e.g. [1-4]. However, this design treats the toxicity response as a binary indicator of dose limiting toxicity (DLT) and does not account for the number and specific grades of toxicities experienced by patients during the trial. Chen et al. (2010) proposed a novel toxicity score system to fully utilize all toxicity information using a normalized equivalent toxicity score (NETS). In this paper, we propose to incorporate NETS into EWOC using a quasi-Bernoulli likelihood approach to design cancer Phase I clinical trials. We call the design escalation with overdose control using normalized equivalent toxicity score (EWOC-NETS). Simulation results show that this design has good operating characteristics and improves the accuracy of MTD, trial efficiency, therapeutic effect, and overdose control relative to EWOC which is used as a representative of designs treating toxicity response as a binary indicator of DLT. We illustrate the performance of this design using real trial data in identifying the Phase II dose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app