Add like
Add dislike
Add to saved papers

Ionic silica based hybrid material containing the pyridinium group used as an adsorbent for textile dye.

The present study reports the development of an ionic silica based hybrid material containing the cationic pyridinium group, which was employed for the removal of the Reactive Red 194 textile dye from aqueous solution. Three hybrid material samples were prepared with planned textural and chemical properties, varying the inorganic precursor molar percentage in the sol-gel synthesis. The obtained samples were defined as Py/Si-90, Py/Si-92 and Py/Si-94, where the number specifies the inorganic molar percentage. The hybrid samples were characterized by elemental, infrared, (13)C and (29)Si NMR, N(2) adsorption-desorption isotherms and thermogravimetric analyses. The dye-removing ability of these adsorbents was determined by the batch contact adsorption procedure. Effects such as pH value and adsorbent dosage on the adsorption capacities were studied. Four kinetic models were applied. The adsorption was best fitted to Avrami fractional-order kinetic model for the three hybrid material samples. The kinetic data were also adjusted to an intra-particle diffusion model resulting three linear regions, indicating that the adsorption kinetics follows multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich and Liu isotherm models. The maximum adsorption capacities were 165.4, 190.3 and 195.9 mg g(-1) for Py/Si-90, Py/Si-92 and Py/Si-94, respectively. Simulated dye-house effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Dye loaded adsorbents were regenerated (>98.2%) by using 0.4 mol L(-1) of NaOH solution as an eluent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app