Add like
Add dislike
Add to saved papers

Junctional adhesion molecule overexpression in Kaposi varicelliform eruption skin lesions - as a possible herpes virus entry site.

CONTEXT: Herpes simplex virus (HSV) infection of the skin represents a common challenge in dermatology; however, currently the port of viral entry remains obscure. HSV is known to induce an immunoglobulin-binding cell surface receptor in infected cells that utilizes a non-immune mechanism. The replication of HSV in cultured cells is accompanied by the appearance of surface receptors with an affinity for the Fc region of immunoglobulin G.

CASE REPORT: We describe a 43 year old African American male who presented with a generalized rash, including intense pruritus and umbilicated vesiculopustules. The patient had been previously diagnosed and treated for psoriasis with methotrexate and prednisone. Hematoxylin and eosin demonstrated keratinocytes with ballooning degeneration within the epidermis. Direct immunofluorescence (DIF) results resembled the pattern of paraneoplastic pemphigus, with negative indirect immunofluorescence (IIF) results on rat bladder. Immunohistochemistry revealed deposits of the complement membrane attack complex within dermal sweat glands, as well as the presence of herpes simplex virus 1 on the skin. We report a case of Kaposi varicelliform eruption, a cutaneous eruption caused by a virus infecting patients with pre-existing dermatoses.

CONCLUSION: HSV virus infection with over-expression of the junctional adhesion molecule close to herpetic infection sites may preferentially increase viral entry through the skin, possibly triggering a Kaposi varicelliform eruption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app