Add like
Add dislike
Add to saved papers

Structural elucidation of phase I and II metabolites of bupivacaine in horse urine and fungi of the Cunninghamella species using liquid chromatography/multi-stage mass spectrometry.

RATIONALE: Bupivacaine is a local anaesthetic prohibited in equine sports. It is highly metabolized in the horse but a thorough description of its metabolite profile is lacking. An administration study should find appropriate analytical targets for doping control. Furthermore, knowledge of an in vitro system for production of metabolites would be beneficial.

METHODS: Marcain® (bupivacaine hydrochloride) was administered subcutaneously to a horse and urine samples were collected. In vitro metabolic systems consisting of the fungi Cunninghamella elegans and Cunninghamella blakesleeana were incubated with bupivacaine and bupivacaine-d(9). Samples were analyzed directly after dilution or cleaned up using liquid-liquid extraction. Separation was achieved with liquid chromatography. Mass spectrometric analysis was performed using positive electrospray ionization with both a tandem quadrupole and an ion trap instrument using MS(n) and hydrogen/deuterium exchange.

RESULTS: In horse urine, seven phase I metabolites were found: 3'- and 4'-hydroxybupivacaine, N-desbutylbupivacaine, two aliphatically hydroxylated metabolites, one N-oxide, and dihydroxybupivacaine. Sulfated hydroxybupivacaine and glucuronides of 3'- and 4'-hydroxybupivacaine and of dihydroxybupivacaine were also detected. All these metabolites were previously undescribed in the horse, except for 3'-hydroxybupivacaine. 3'- and 4'-Hydroxybupivacaine were designated as appropriate targets for doping control. Interestingly, all the equine phase I metabolites were also detected in the samples from C. elegans and C. blakesleeana.

CONCLUSIONS: The qualitative aspects of the metabolism of bupivacaine in the horse have been investigated with many novel metabolites described. The fungi C. elegans and C. blakesleeana have proven to be relevant models for mammalian metabolism of bupivacaine and they may in the future be used to produce analytical reference materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app