Add like
Add dislike
Add to saved papers

Omentin plays an anti-inflammatory role through inhibition of TNF-α-induced superoxide production in vascular smooth muscle cells.

Omentin is a recently identified adipocytokine and its effect in vasculature is largely unknown. Here we examined the effects of omentin on smooth muscle cells (SMCs) inflammatory states. Western blotting was performed to analyze inflammatory signal transduction in cultured SMCs. Phosphorylation of nuclear factor-κB (NF-κB), p38 and JNK, and expression of vascular cell adhesion molecule (VCAM)-1 and cyclooxygenase-2 were not induced by omentin (50-300ng/ml, 20min or 24h). On the other hand, tumor necrosis factor-α (TNF-α; 10ng/ml, 20min)-induced phosphorylation of p38 and JNK was significantly inhibited by omentin pretreatment in a concentration-dependent manner (50-300ng/ml, 30min). TNF-α (24h)-induced expression of VCAM-1 was also significantly inhibited by omentin pretreatment in a concentration-dependent manner. Both inhibitor of p38 (SB203580) and JNK (SP600125) significantly inhibited TNF-α-induced VCAM-1 expression. Omentin (300ng/ml, 30min) inhibited TNF-α (1h)-induced nicotinamide adenine dinucleotide phosphate oxidase activity as determined by lucigenin assay. An antioxidant drug, N-acetyl-l-cysteine significantly inhibited TNF-α-induced phosphorylation of p38 and JNK. Furthermore, omentin (300ng/ml, 30min) significantly inhibited TNF-α (24h)-induced monocytic cells adhesion to SMCs. In rat isolated thoracic aorta, omentin (300ng/ml, 30min) inhibited TNF-α (24h)-induced VCAM-1 expression. The present results demonstrate for the first time that omentin plays an anti-inflammatory role by preventing the TNF-α-induced VCAM-1 expression in SMCs. It is suggested that omentin inhibits TNF-α-induced VCAM-1 expression via preventing the activation of p38 and JNK at least in part through inhibition of superoxide production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app