JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Axitinib targeted cancer stemlike cells to enhance efficacy of chemotherapeutic drugs via inhibiting the drug transport function of ABCG2.

Molecular Medicine 2012 July 19
Stemlike cells have been isolated by their ability to efflux Hoechst 33342 dye and are called the side population (SP). We evaluated the effect of axitinib on targeting cancer stemlike cells and enhancing the efficacy of chemotherapeutical agents. We found that axitinib enhanced the cytotoxicity of topotecan and mitoxantrone in SP cells sorted from human lung cancer A549 cells and increased cell apoptosis induced by chemotherapeutical agents. Moreover, axitinib particularly inhibited the function of adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) and reversed ABCG2-mediated multidrug resistance (MDR) in vitro. However, no significant reversal effect was observed in ABCB1-, ABCC1- or lung resistance-related protein (LRP)-mediated MDR. Furthermore, in both sensitive and MDR cancer cells axitinib neither altered the expression of ABCG2 at the mRNA or protein levels nor blocked the phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2. In nude mice bearing ABCG2-overexpressing S1-M1-80 xenografts, axitinib significantly enhanced the antitumor activity of topotecan without causing additional toxicity. Taken together, these data suggest that axitinib particularly targets cancer stemlike cells and reverses ABCG2-mediated drug resistance by inhibiting the transporter activity of ABCG2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app