JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene.

MicroRNAs are evolutionarily conserved small RNAs that post-transcriptionally regulate gene expression and have emerged as critical regulators of skeletal muscle development. Here, we identified miR-148a as a novel myogenic microRNA that mediated myogenic differentiation. The expression levels of miR-148a increased during C2C12 myoblast differentiation. Overexpression of miR-148a significantly promoted myogenic differentiation of both C2C12 myoblast and primary muscle cells. Blocking the function of miR-148a with a 2'-O-methylated antisense oligonucleotide inhibitor repressed C2C12 myoblast differentiation. Using a bioinformatics approach, we identified Rho-associated coiled-coil containing protein kinase 1 (ROCK1), a known inhibitor of myogenesis, as a target of miR-148a. A dual-luciferase reporter assay was used to demonstrate that miR-148a directly targeted the 3'-UTR of ROCK1. In addition, the overexpression of miR-148a decreased the protein expression of ROCK1 in C2C12 myoblast and primary muscle cells. Furthermore, ROCK1 inhibition with specific siRNA leaded to accelerated myogenic differentiation progression, underscoring a negative regulatory function of ROCK1 in myogenesis. Therefore, our results revealed a novel mechanism in which miR-148a positively regulates myogenic differentiation via ROCK1 down-regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app