JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Strong impact of CD4+ Foxp3+ regulatory T cells and limited effect of T cell-derived IL-10 on pathogen clearance during Plasmodium yoelii infection.

It is well established that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a crucial role in the course of different infectious diseases. However, contradictory results have been published regarding to malaria infection. In this study, we report that specific ablation of Foxp3(+) Tregs in Plasmodium yoelii-infected DEREG-BALB/c mice leads to an increase in T cell activation accompanied by a significant decrease in parasitemia. To better understand how Foxp3(+) Tregs orchestrate this phenotype, we used microarrays to analyze CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells in the course of P. yoelii infection. Using this approach we identified genes specifically upregulated in CD4(+)CD25(+)Foxp3(+) Tregs in the course of infection, such as G-protein-coupled receptor 83 and Socs2. This analysis also revealed that both CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells upregulate CTLA-4, granzyme B, and, more strikingly, IL-10 during acute blood infection. Therefore, we aimed to define the function of T cell-derived IL-10 in this context by Cre/loxP-mediated selective conditional inactivation of the IL-10 gene in T cells. Unexpectedly, IL-10 ablation in T cells exerts only a minor effect on parasite clearance, even though CD8(+) T cells are more strongly activated, the production of IFN-γ and TNF-α by CD4(+)CD25(-) T cells is increased, and the suppressive activity of CD4(+)CD25(+) Tregs is reduced upon infection. In summary, these results suggest that CD4(+)Foxp3(+) Tregs modulate the course of P. yoelii infection in BALB/c mice. Moreover, CD4(+) T cell-derived IL-10 affects T effector function and Treg activity, but has only a limited direct effect on parasite clearance in this model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app