Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects

Ali Hatef, S M Sadeghi, Mahi R Singh
Nanotechnology 2012 May 25, 23 (20): 205203
It is known that surface-plasmon resonances of metallic nanoparticles can significantly enhance the field experienced by semiconductor quantum dots. In this paper we show that, when quantum dots are in the vicinity of metallic nanoparticles and interact with coherent light sources (laser fields), coherent exciton-plasmon coupling (quantum coherence effects) can increase the amount of the plasmonic field enhancement significantly. We also study how the coherent molecular resonances generated by such a coupling process are influenced by the self-renormalization of the plasmonic fields and the structural parameters of the systems, particularly the size and shape of the metallic nanoparticle. The renormalization process happens via mutual impacts of the radiative decay rate of excitons and the coherent exciton-plasmon coupling on each other. Our results highlight the conditions where the molecular resonances become very sharp, offering optical switching processes with high extinction ratio and wide ranging device applications.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"