JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

GABAergic inhibition regulates developmental synapse elimination in the cerebellum.

Neuron 2012 April 27
Functional neural circuit formation during development involves massive elimination of redundant synapses. In the cerebellum, one-to-one connection from excitatory climbing fiber (CF) to Purkinje cell (PC) is established by elimination of early-formed surplus CFs. This process depends on glutamatergic excitatory inputs, but contribution of GABAergic transmission remains unclear. Here, we demonstrate impaired CF synapse elimination in mouse models with diminished GABAergic transmission by mutation of a single allele for the GABA synthesizing enzyme GAD67, by conditional deletion of GAD67 from PCs and GABAergic interneurons or by pharmacological inhibition of cerebellar GAD activity. The impaired CF synapse elimination was rescued by enhancing GABA(A) receptor sensitivity in the cerebellum by locally applied diazepam. Our electrophysiological and Ca2+ imaging data suggest that GABA(A) receptor-mediated inhibition onto the PC soma from molecular layer interneurons influences CF-induced Ca2+ transients in the soma and regulates CF synapse elimination from postnatal day 10 (P10) to around P16.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app