JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stable carbon and nitrogen isotope signatures of root-holoparasitic Cynomorium songaricum and its hosts at the Tibetan plateau and the surrounding Gobi desert in China.

We first measured the δ(13)C and δ(15)N values of root holoparasite Cynomorium songaricum and its hosts from 19 sites across four provinces in northwest China, in an attempt to investigate their nutritional relationship at the Tibetan plateau and the surrounding Gobi desert. Our study showed that the δ(13)C of C. songaricum closely mirrored the values of its hosts, Nitraria tangutorum and N. sibirica across all sampling sites. C. songaricum was significantly depleted in (13)C compared to host plants at the Tibetan plateau, showing an average parasite/host δ(13)C difference of-0.6 ‰. In contrast, (15)N of C. songaricum was significantly enriched by+1.3 ‰ compared to the hosts, implying that these holoparasites had other nitrogen resources. Although no difference in the δ(13)C and δ(15)N values between holoparasites and hosts was detected, the δ(13)C and δ(15)N values of holoparasites were significantly correlated with those of their hosts at the Gobi desert. The δ(13)C versus δ(15)N values were significantly but negatively correlated for the hosts; however, holoparasite/host variation in δ(13)C was not correlated with the variation in δ(15)N. The δ(13)C versus δ(15)N values were negatively correlated in C. songaricum, and this relationship tended to be magnified along the increasing elevations independent of the host plants. C. songaricum at the Tibetan plateau exhibited different δ(13)C and δ(15)N signatures compared with those at the Gobi desert. Furthermore, both δ(13)C and δ(15)N values of C. songaricum and its host plants in salt marshes at the Tibetan plateau were different from those in sand sites at the Tibetan plateau and the Gobi desert. Our results indicate that the isotopic difference depends on the different altitudes and habitats and is host-specific.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app