Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Concentric necklace nanolenses for optical near-field focusing and enhancement.

ACS Nano 2012 May 23
In this paper, we design and analyze concentric necklace nanolenses (CNNLs) which consist of metal nanoparticle dimers placed in the center of one or more concentric rings of plasmonic necklaces. We use three-dimensional finite-difference time-domain simulations, electron-beam lithography fabrication, dark-field scattering analysis, and surface-enhanced Raman scattering (SERS) measurements to investigate the far-field scattering and near-field light localization properties of CNNLs. Using these methods, we show that CNNLs display far-field scattering properties that arise from coupling between the dimer and surrounding necklace(s), leading to two pronounced peaks in single-necklace CNNLs and three pronounced peaks in double-necklace CNNLs. In our near-field analysis, we find that the number of particles in the surrounding necklace is an important degree of freedom in the optimization of near-field intensity within the dimer hot-spot region. By using CNNLs where the necklace diameters have a diameter equal to an integer multiple of the resonance wavelength of the isolated dimer times a constant scaling factor, the intensity of near-fields can be optimized for all geometries over a broad-band wavelength range. Using optimized geometries, we perform SERS experiments on CNNLs coated with a pMA monolayer and demonstrate 7× Raman enhancement in the single-necklace CNNL and 18× enhancement in the double-necklace CNNL over the reference dimer antenna geometry, with an average Raman enhancement value of approximately 7 × 10(5).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app