JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers.

Analysis of the genome sequence of Vibrio parahaemolyticus reveals two IcmF family genes in putative type VI secretion system (vpT6SS) clusters in chromosomes 1 (icmF1) and 2 (icmF2). The icmF1 gene is present in majority of clinical isolates (87.5 %), but has a low fraction (25.0 %) in environmental isolates. However, icmF2 is contained in all strains of both clinical and environmental sources. Deletion of either icmF1 or hcp1 significantly reduced bacterial adhesion to Caco-2 cells or HeLa monolayers. However, the ΔicmF2 and Δhcp2 mutants showed decreased adhesion only to HeLa monolayers. Western blot analysis showed that Hcp2 was present both in the supernatant and pellet samples in the wild-type strain, but only in the pellet of the ΔicmF2 mutant, indicating that Hcp2 is a translocon of T6SS2. Although vpT6SS1 might be functional in cellular adhesion, the putative translocon Hcp1 was not detectable. Quantitative PCR revealed 10-fold and 17-fold less transcripts of hcp1 and icmF1 mRNA than those of hcp2 and icmF2 accordingly. Thus, we postulate that the putative vpT6SS systems contribute to adhesion of V. parahaemolyticus to host cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app