Add like
Add dislike
Add to saved papers

Dolphin insula reflects minicolumnar organization of mammalian isocortex.

The brain of the bottlenose dolphin exhibits patterns of isocortical parcellation and cytoarchitecture distinct from those seen in primates, yet cell clusters in anterior insula are comparable in scale to module-like cell arrangements found throughout isocortex in other placental mammalian species with long divergent evolutionary histories. This similarity may be due to common ancestry, or to convergence as a result of selective constraints on organization of connections within such modules. Differences reflect alternate arrangements of minicolumns, an elemental cytoarchitectonic motif of isocortex defined by radially oriented pyramidal cell arrays. In contrast with larger modular structures incorporating them, minicolumns have been highly conserved in mammalian evolution. In this study a previously validated imaging method was employed to assess verticality, D, a parameter indicating radial bias of isocortex. Photomicrographs of coronal Nissl-stained sections of dolphin anterior insular cortex were compared with sections from human brains of putatively homologous areas as well as other isocortical areas differing in modular organization. Dolphin insula exhibited a high degree of verticality consistent with conserved minicolumnar organization. Our findings indicate that a basic structural motif of isocortex is synapomorphic in a species of marine mammal exhibiting unique phylogenetically derived isocortical characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app