JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Diet intervention reduces uptake of αvβ3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques.

BACKGROUND: Expression of α(v)β(3) integrin has been proposed as a marker for atherosclerotic lesion inflammation. We studied whether diet intervention reduces uptake of α(v)β(3) integrin-targeted positron emission tomography tracer (18)F-galacto-RGD in mouse atherosclerotic plaques.

METHODS AND RESULTS: Hypercholesterolemic LDLR(-/-) ApoB(100/100) mice on high-fat diet for 4 months were randomized to further 3 months on high-fat diet (high-fat group, n = 8) or regular mouse chow (intervention group, n = 7). Intima-media ratio describing plaque burden was comparable between intervention and high-fat groups (2.0 ± 0.5 vs 2.3 ± 0.8, P = .5). Uptake of (18)F-galacto-RGD in the aorta was lower in the intervention than high-fat group (%ID/g 0.16 vs 0.23, P < .01). Autoradiography showed 35% lower uptake of (18)F-galacto-RGD in the atherosclerotic plaques in the intervention than high-fat group (P = .007). Uptake of (18)F-galacto-RGD in plaques correlated with uptake of (3)H-deoxyglucose and nuclear density, which was lower in the intervention than high-fat group (P = .01). Flow cytometry demonstrated macrophages expressing α(v) and β(3) integrins in the aorta.

CONCLUSIONS: Uptake of (18)F-galacto-RGD in mouse atherosclerotic lesions was reduced by lipid-lowering diet intervention. Expression of α(v)β(3) integrin is a potential target for evaluation of therapy response in atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app