JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

IFNγ contributes to the development of gastric epithelial cell metaplasia in Huntingtin interacting protein 1 related (Hip1r)-deficient mice.

Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking that is crucial for parietal cell function and epithelial cell homeostasis in the stomach. Gastric parietal cells in Hip1r-deficient mice are lost by apoptotic cell death, which leads to a progressive epithelial cell derangement, including glandular hypertrophy, zymogenic cell loss and expansion of a metaplastic mucous cell lineage known as spasmolytic polypeptide-expressing metaplasia (SPEM). The epithelial cell changes are associated with infiltration of inflammatory cells. As inflammatory mediators, such as IFNγ, have been shown to contribute to the development of the gastric epithelial cell metaplasia after Helicobacter infection, we tested whether IFNγ played a role in the spontaneous progressive epithelial metaplasia observed in Hip1r-deficient mice. Hip1r-deficient mice were crossed with IFNγ-deficient mice and single- and double-mutant mice were analyzed at 3 and 12 months of age. Histopathology scoring showed that loss of IFNγ tempered the spontaneous development of metaplastic lesions in Hip1r-deficient mice. Loss of IFNγ was observed to abrogate the glandular hypertrophy evident in Hip1r mutant stomach, although increased epithelial cell proliferation and elevated gastrin levels were not affected by the presence or absence of this pro-inflammatory cytokine. An analysis of cell lineage markers in the double-mutant mice demonstrated that IFNγ specifically affected the development of metaplastic mucous cells in the neck region, whereas the parietal cell, surface mucous cell and zymogenic cell alterations remained similar to the histopathology in the Hip1r mutant. Morphometric analysis showed that IFNγ was required for the mucous cell hypertrophy and hyperplasia observed in Hip1r-deficient mice. Together, these findings demonstrate that IFNγ is critical for the development of the gastric epithelial cell metaplasia that results from parietal cell atrophy in the Hip1r-deficient mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app