OPEN IN READ APP
JOURNAL ARTICLE

Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods

Krishna P Katuri, Saravanan Rengaraj, Paul Kavanagh, Vincent O'Flaherty, Dónal Leech
Langmuir: the ACS Journal of Surfaces and Colloids 2012 May 22, 28 (20): 7904-13
22524560
Biofilms of the electroactive bacterium Geobacter sulfurreducens were induced to grow on graphite-rod electrodes under a potential of 0 V (vs Ag/AgCl) in the presence of acetate as an electron donor. Increased anodic currents for bioelectrocatalytic oxidation of acetate were obtained when the electrodes were incubated for longer periods with periodic electron-donor feeding. The maximum current density for acetate oxidation increased 2.8-fold, and the biofilm thickness increased by 4.25-fold, over a time period of 83-147 h. Cyclic voltammetry in the presence of acetate supports a model of heterogeneous electron transfer, one electron at time, from biofilm to electrode through a dominant redox species centered at -0.41 V vs Ag/AgCl. Voltammetry performed under nonturnover conditions provided an estimate of the surface coverage of the redox species of 25 nmol/cm(2). This value was used to estimate a redox species concentration of 7.3 mM within the 34-μm-thick biofilm and a charge-transport diffusion coefficient of 3.6 × 10(-7) cm(2)/s. This value of diffusion coefficient is greater than that observed in traditional thin-film voltammetric studies with redox polymer films containing much higher surface concentrations of redox species and might be associated with proton transport to ensure electroneutrality within the biofilm upon electrolysis.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
22524560
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"