JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

TNF-α, erectile dysfunction, and NADPH oxidase-mediated ROS generation in corpus cavernosum in high-fat diet/streptozotocin-induced diabetic rats.

INTRODUCTION: Patients with diabetes-associated erectile dysfunction (ED) are characterized by an increase in circulating tumor necrosis factor-alpha (TNF-α). However, no study has indicated whether and how TNF-α plays a role in the pathogenesis of ED associated with diabetes.

AIM: We examined the effects and potential mechanism of infliximab (INF), a chimeric monoclonal antibody to TNF-α, on reactive oxygen species (ROS) generation in corpus cavernosum and ED in diabetic rats.

METHODS: Four groups of male rats were used: age-matched normal controls; diabetic rats induced by a high-fat diet (HFD) combined with a single streptozotocin (STZ) injection (35 mg/kg body weight, intraperitoneal [i.p.]); nondiabetic rats receiving INF (5 mg/kg body weight/week, i.p.), and diabetic rats receiving INF. Erectile function was assessed with electrical stimulation of the cavernous nerve after 8 weeks. The blood and penile tissues were harvested for plasma biochemical determinations, serum TNF-α measurement, penile ROS detection, and molecular assays of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, endothelial nitric oxide synthase (eNOS), phospho-eNOS, and neural nitric oxide synthase (nNOS) in the penis.

MAIN OUTCOME MEASURES: The effect of INF on HFD/STZ-induced diabetic ED and NADPH oxidase-mediated ROS generation was studied in diabetic corpus cavernosum.

RESULTS: Untreated diabetic rats displayed significantly decreased erectile parameters, and increased plasma TNF-α levels, penile ROS production, p47(phox) and gp91(phox) expression compared with nondiabetic controls. INF neutralized TNF-α and significantly reduced ED in diabetic rats, in which marked decreases in p47(phox) and gp91(phox) expression and ROS generation in corpus cavernosum were noted. The ratio of phospho-eNOS to eNOS and expression of nNOS in the penis were significantly increased in INF-treated vs. untreated diabetic rats.

CONCLUSIONS: Increased TNF-α expression associated with diabetes contributes to ED by promoting NAPDH oxidase-mediated ROS generation in corpus cavernosum. INF protects against diabetic ED by neutralizing TNF-α.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app