JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Positron emission tomography imaging of tumor angiogenesis with a 66Ga-labeled monoclonal antibody.

The goal of this study was to develop a (66)Ga-based positron emission tomography (PET) tracer for noninvasive imaging of CD105 expression during tumor angiogenesis, a hallmark of cancer. (66)Ga was produced using a cyclotron with (nat)Zn or isotopically enriched (66)Zn targets. TRC105, a chimeric anti-CD105 monoclonal antibody, was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (66)Ga. No difference in CD105 binding affinity or specificity was observed between TRC105 and NOTA-TRC105 based on flow cytometry analysis. Reactivity of (66)Ga for NOTA, corrected to the end of bombardment, was between 74 and 222 GBq/μmol for both target enrichments with <2 ppb of cold gallium. (66)Ga-labeling was achieved with >80% radiochemical yield. Serial PET imaging revealed that the murine breast cancer 4T1 tumor uptake of (66)Ga-NOTA-TRC105 was 5.9 ± 1.6, 8.5 ± 0.6, and 9.0 ± 0.6% ID/g at 4, 20, and 36 h postinjection, respectively (n = 4). At the last time point, tumor uptake was higher than that of all organs, which gave excellent tumor contrast with a tumor/muscle ratio of 10.1 ± 1.1. Biodistribution data as measured by gamma counting were consistent with the PET findings. Blocking experiment, control studies with (66)Ga-NOTA-cetuximab, as well as ex vivo histology all confirmed the in vivo target specificity of (66)Ga-NOTA-TRC105. Successful PET imaging with high specific activity (66)Ga (>700 GBq/μmol has been achieved) as the radiolabel opens many new possibilities for future PET research with antibodies or other targeting ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app