JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO(3)-Al composite film as cathode buffer layer.

Advanced Materials 2012 May 23
High-efficiency inverted polymer solar cells based on PCDTBT:PC(70)BM blend with the MoO(3)-Al composite film as the cathode buffer layer and the MoO(3)/Al as the anode have been demonstrated. A V(OC) of 0.88 V, a J(SC) of 10.88 mA cm(-2), a FF of 70.7% and a PCE of 6.77% are achieved. The MoO(3)-Al composite films are highly transparent with adjustable work functions which can be fine tuned based on the Al content in the composite, thus allowing us to optimize the interfacial property at cathode buffer layer/BHJ interfaces to reduce recombination loss and to improve the photovoltaic performance. This new approach has simplified the device fabrication and will render economizing in large scale applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app