Add like
Add dislike
Add to saved papers

Phase behavior of CO2 in room-temperature ionic liquid 1-ethyl-3-ethylimidazolium acetate.

Carbon dioxide solubility (vapor-liquid equilibria: VLE) in an ionic liquid, 1-ethyl-3-ethylimidazolium acetate ([eeim][Ac]) was measured using a gravimetric microbalance at four isotherms (about 283, 298, 323, and 348 K) up to about 2 MPa. An equation-of-state (EOS) model was used to analyze the VLE data and has predicted vapor-liquid-liquid equilibria (VLLE: or liquid-liquid separations) in CO(2)-rich solutions. The VLLE prediction was confirmed experimentally using a volumetric method and likely the liquid-liquid equilibria will intersect with the solid-liquid equilibria such that no lower critical solution temperature can exist and the binary system may be classified as Type III phase behavior. Carbon dioxide solubility in the ionic-liquid-rich solution show extremely unusual behavior. CO(2) dissolves in the ionic liquid at large concentrations (up to about 20 mole % of CO(2)) with almost no vapor pressure above the mixtures. This result is similar to our previous findings with 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) and 1-ethyl-3-methylimidazolium acetate ([emim][Ac]). In all three cases the CO(2) forms a molecular complex (or chemical reaction) with the ionic liquid. (13)C NMR spectroscopy has identified the structure for CO(2) absorbed in [eeim][Ac] to be [eeim]-2-carboxylate. Addition of water to the carboxylate leads to the dissolution of CO(2). The thermodynamic excess properties (enthalpy, entropy, and Gibbs energy) for all three systems have been calculated using the EOS and support the complex formation of the type AB(2) (where A is CO(2) and B is ionic liquid). Isothermal differential scanning calorimetry has verified the heat of reaction calculations and found for CO(2) absorbing in [emim][Ac], [eeim][Ac] and [bmim][Ac] to be about -38 kJ mol(-1). Additional experiments have examined the effect of water on the density, viscosity and CO(2) solubility in [eeim][Ac] and the CO(2) solubility in mixtures of [eeim][Ac] with other acetate salts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app