JOURNAL ARTICLE

Cell therapy limits myofibroblast differentiation and structural cardiac remodeling: basic fibroblast growth factor-mediated paracrine mechanism

Paul W M Fedak, Liping Bai, Jeannine Turnbull, Janet Ngu, Kishan Narine, Henry J Duff
Circulation. Heart Failure 2012 May 1, 5 (3): 349-56
22508775

BACKGROUND: Experimental cell therapy attenuates maladaptive cardiac remodeling and improves heart function. Paracrine mechanisms have been proposed. The effect of cell therapy on post infarction cardiac fibroblast and extracellular matrix (ECM) regulation was examined.

METHODS AND RESULTS: Vascular smooth muscle cells (VSMC) were injected into the border zone of subacute infarcted syngeneic Fischer rat hearts and compared with medium-injected controls. Twelve weeks post injection, cell-treated hearts showed preserved ECM content and attenuated structural chamber remodeling. Myofibroblast activation (α-smooth muscle actin expression) was decreased significantly, while basic fibroblast growth factor (bFGF) expression, a known inhibitor of transforming growth factor β-1-induced fibroblast differentiation, was increased. Matrix metalloproteinase-2 expression and activation by gelatin zymography was unchanged between groups, while its endogenous inhibitor, tissue inhibitors of matrix metalloproteinase (TIMP)-2, showed both increased expression and enhanced inhibitory capacity in cell-treated hearts. To define paracrine mechanisms, in vitro effects of VSMC conditioned media on myofibroblast activation were assessed by 3-D collagen gel contraction assay. VSMC conditioned media significantly inhibited collagen contraction, while a specific bFGF inhibitor abolished this paracrine response. TIMP-2 induced collagen contraction, but the effect was suppressed in the presence of bFGF.

CONCLUSIONS: Extracellular matrix dysregulation post myocardial infarction is improved by cell therapy. These data suggest that cell transplantation attenuates myofibroblast activation and subsequent maladaptive structural chamber remodeling through paracrine mechanisms involving bFGF and TIMP-2.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22508775
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"