Add like
Add dislike
Add to saved papers

Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fcγ receptors in a murine model.

Transfusion 2012 December
BACKGROUND: Antibody binding to red blood cells (RBCs) can induce potentially fatal outcomes, including hemolytic transfusion reactions (HTRs), hemolytic disease of the fetus and newborn, and autoimmune hemolytic anemia. The mechanism(s) of RBC destruction following antibody binding is typically thought to require complement activation and/or the involvement of Fcγ receptors (FcγRs). In the current report, we analyzed mechanisms of HTRs during incompatible transfusions of murine RBCs expressing human glycophorin A (hGPA) into mice with anti-hGPA.

STUDY DESIGN AND METHODS: C3 and Fcγ receptor knockout, splenectomized, Fcγ receptor blocking antibody-treated, and clodronate-treated mice were passively immunized with anti-hGPA (10F7 or 6A7) and transfused with RBCs expressing the hGPA antigen. Posttransfusion blood and serum were collected and analyzed via flow cytometry and confocal microscopy.

RESULTS: This HTR model results in both rapid clearance and cytokine storm. Neither complement nor FcγRs were required for RBC clearance; in contrast, FcγRs were required for cytokine storm. Circulating aggregates of hGPA RBCs were visible during the HTR. Splenectomy and phagocyte depletion by clodronate had no effect on acute RBC clearance; however, incompatible RBCs reentered over 24 hours in clodronate-treated mice.

CONCLUSION: These data demonstrate a biphasic HTR, the first phase involving sequestration of incompatible hGPA RBCs and the second phase involving phagocytosis of sequestered RBCs. However, the mechanism(s) of phagocytosis in the second phase required neither C3 nor FcγRs. These findings demonstrate novel mechanistic biology of HTRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app