Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

A mixture-model approach for parallel testing for unequal variances.

Testing for unequal variances is usually performed in order to check the validity of the assumptions that underlie standard tests for differences between means (the t-test and anova). However, existing methods for testing for unequal variances (Levene's test and Bartlett's test) are notoriously non-robust to normality assumptions, especially for small sample sizes. Moreover, although these methods were designed to deal with one hypothesis at a time, modern applications (such as to microarrays and fMRI experiments) often involve parallel testing over a large number of levels (genes or voxels). Moreover, in these settings a shift in variance may be biologically relevant, perhaps even more so than a change in the mean. This paper proposes a parsimonious model for parallel testing of the equal variance hypothesis. It is designed to work well when the number of tests is large; typically much larger than the sample sizes. The tests are implemented using an empirical Bayes estimation procedure which `borrows information' across levels. The method is shown to be quite robust to deviations from normality, and to substantially increase the power to detect differences in variance over the more traditional approaches even when the normality assumption is valid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app