Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

RV dysfunction in pulmonary hypertension is independently related to pulmonary artery stiffness.

OBJECTIVES: This study investigated whether right ventricular (RV) adaptation to chronic pressure overload is associated with pulmonary artery (PA) stiffness beyond the degree of severity of pulmonary hypertension (PH).

BACKGROUND: Increased PA stiffness has been associated with reduced survival in PH. The mechanisms for this association remain unclear.

METHODS: Right heart catheterization and cardiac magnetic resonance were performed within 1 week in 124 patients with known or suspected chronic PH. Pulmonary vascular resistance index (PVRI) and PA pressures were quantified from right heart catheterization. Cardiac magnetic resonance included standard biventricular cine sequences and main PA flow quantification with phase-contrast imaging. Indexes of PA stiffness (elasticity, distensibility, capacitance, stiffness index beta, and pulse pressure) were quantified combining right heart catheterization and cardiac magnetic resonance data. RV performance and adaptation were measured by RV ejection fraction, right ventricular mass index (RVMI), RV end-systolic volume index, and right ventricular stroke work index (RVSWI).

RESULTS: All indexes of PA stiffness were significantly correlated with measures of RV performance (Spearman rho coefficients ranging from -0.20 to 0.61, p < 0.05). Using multivariate regression analysis, PA elasticity, distensibility, and index beta were independently associated with all measures of RV performance after adjusting PVRI (p ≤ 0.024). PA capacitance was independently associated with RV ejection fraction, RVMI, and RVSWI (p < 0.05), whereas PA pulse pressure was associated with RVMI and RVSWI (p ≤ 0.027). Compared with PVRI, PA elasticity, distensibility, capacitance, and index beta explained 15% to 68% of the variability in RV ejection fraction, RVMI, and RV end-systolic volume index. Relative contributions of PA stiffness for RVSWI were 1.2× to 18.0× higher than those of PVRI.

CONCLUSIONS: PA stiffness is independently associated with the degree of RV dysfunction, dilation, and hypertrophy in PH. RV adaptation to chronic pressure overload is related not only to the levels of vascular resistance (steady afterload), but also to PA stiffness (pulsatile load).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app