Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor).

Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (P<0.001) and were not changed in pesticide treated larvae. As expected, Varroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (P<0.001). Varroa parasitism, arguably coupled with virus infection, resulted in significantly higher transcript abundances for the antimicrobial peptides abaecin, hymenoptaecin, and defensin1. Transcript levels for Prophenoloxidase-activating enzyme (PPOact), an immune end product, were elevated in larvae treated with myclobutanil and chlorothalonil (both are fungicides) (P<0.001). Transcript levels for Hexameric storage protein (Hsp70) were significantly upregulated in imidacloprid, fluvalinate, coumaphos, myclobutanil, and amitraz treated larvae. Definitive impacts of pesticides and Varroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app