JOURNAL ARTICLE
META-ANALYSIS
Add like
Add dislike
Add to saved papers

Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis.

UNLABELLED: PET with the glucose analog (18)F-FDG is increasingly used to monitor tumor response to therapy. To use quantitative measurements of tumor (18)F-FDG uptake for assessment of tumor response, the repeatability of this quantitative metabolic imaging method needs to be established. Therefore, we determined the repeatability of different standardized uptake value (SUV) measurements using the available data.

METHODS: A systematic literature search was performed to identify studies addressing (18)F-FDG repeatability in malignant tumors. The level of agreement between test and retest values of 2 PET uptake measures, maximum SUV (SUV(max)) and mean SUV (SUV(mean)), was assessed with the coefficient of repeatability using generalized linear mixed-effects models. In addition, the influence of tumor volume on repeatability was assessed. Principal component transformation was used to compare the reproducibility of the 2 different uptake measures.

RESULTS: Five cohorts were identified for this metaanalysis. For SUV(max) and SUV(mean), datasets of 86 and 102 patients, respectively, were available. Percentage repeatability is a function of the level of uptake. SUV(mean) had the best repeatability characteristics; for serial PET scans, a threshold of a combination of 20% as well as 1.2 SUV(mean) units was most appropriate. After adjusting for uptake rate, tumor volume had minimal influence on repeatability.

CONCLUSION: SUV(mean) had better repeatability performance than SUV(max). Both measures showed poor repeatability for lesions with low (18)F-FDG uptake. We recommend the evaluation of biologic effects in PET by reporting a combination of minimal relative and absolute changes to account for test-retest variability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app