Novel TiO₂-Pt@SiO₂ nanocomposites with high photocatalytic activity

Hao-Shuai Wu, Ling-Dong Sun, Huan-Ping Zhou, Chun-Huan Yan
Nanoscale 2012 May 21, 4 (10): 3242-7
This article reports a facile and controllable two-step method to construct TiO(2)-Pt@SiO(2) nanocomposites. TiO(2) nanoparticles (NPs), with small size and high surface energy, were synthesized by a solvothermal reaction process. The TiO(2)-Pt@SiO(2) nanocomposites were fabricated by a reverse micro-emulsion method. SiO(2) shell coated NPs were adopted for further photocatalytic reaction. Because of their small size and high surface energy, TiO(2)@SiO(2) and TiO(2)-Pt@SiO(2) nanocomposites show higher photocatalytic activity than commercial Degussa P25. Compared with TiO(2)@SiO(2), TiO(2)-Pt@SiO(2)nanocomposites have improved photocatalytic activity due to the Pt induced spatial separation of electrons and holes. The silica shells not only maintain the structure of the nanocomposites but also prevent their aggregation during the photocatalytic reactions, which is highly important for the good durability of the photocatalyst. This strategy is simple, albeit efficient, and can be extended to the synthesis of other composites of noble metals. It has opened a new window for the construction of hetero-nanocomposites with high activity and durability, which would serve as excellent models in catalytic systems of both theoretical and practical interest.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"